Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products.
نویسندگان
چکیده
The alpha-proteobacteria phylogenetically related to the Roseobacter clade are predominantly responsible for the degradation of organosulfur compounds, including the algal osmolyte dimethylsulfoniopropionate (DMSP). Silicibacter sp. strain TM1040, isolated from a DMSP-producing Pfiesteria piscicida dinoflagellate culture, degrades DMSP, producing 3-methylmercaptopropionate. TM1040 possesses three lophotrichous flagella and is highly motile, leading to a hypothesis that TM1040 interacts with P. piscicida through a chemotactic response to compounds produced by its dinoflagellate host. A combination of a rapid chemotaxis screening assay and a quantitative capillary assay were used to measure chemotaxis of TM1040. These bacteria are highly attracted to dinoflagellate homogenates; however, the response decreases when homogenates are preheated to 80 degrees C. To help identify the essential attractant molecules within the homogenates, a series of pure compounds were tested for their ability to serve as attractants. The results show that TM1040 is strongly attracted to amino acids and DMSP metabolites, while being only mildly responsive to sugars and the tricarboxylic acid cycle intermediates. Adding pure DMSP, methionine, or valine to the chemotaxis buffer resulted in a decreased response to the homogenates, indicating that exogenous addition of these chemicals blocks chemotaxis and suggesting that DMSP and amino acids are essential attractant molecules in the dinoflagellate homogenates. The implication of Silicibacter sp. strain TM1040 chemotaxis in establishing and maintaining its interaction with P. piscicida is discussed.
منابع مشابه
Genetic dissection of tropodithietic acid biosynthesis by marine roseobacters.
The symbiotic association between the roseobacter Silicibacter sp. strain TM1040 and the dinoflagellate Pfiesteria piscicida involves bacterial chemotaxis to dinoflagellate-produced dimethylsulfoniopropionate (DMSP), DMSP demethylation, and ultimately a biofilm on the surface of the host. Biofilm formation is coincident with the production of an antibiotic and a yellow-brown pigment. In this re...
متن کاملChemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus
The cyanobacterial genera Prochlorococcus and Synechococcus are key phototrophic organisms in the open ocean, and ecological interactions between these groups and heterotrophic bacteria have fundamental importance for marine carbon and nutrient cycling. We applied a microfluidic chemotaxis assay to study the chemotactic response of 3 marine bacterial isolates (Pseudoalteromonas haloplanktis, Vi...
متن کاملProduction of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions.
Bacterial communities associated with marine algae are often dominated by members of the Roseobacter clade, and in the present study, we describe Roseobacter phenotypes that may provide this group of bacteria with selective advantages when colonizing this niche. Nine of 14 members of the Roseobacter clade, of which half were isolated from cultures of the dinoflagellate Pfiesteria piscicida, pro...
متن کاملA novel inducer of Roseobacter motility is also a disruptor of algal symbiosis.
Silicibacter sp. strain TM1040, a member of the Roseobacter clade, forms a symbiosis with unicellular phytoplankton, which is inextricably linked to the biphasic "swim or stick" lifestyle of the bacteria. Mutations in flaC bias the population toward the motile phase. Renewed examination of the FlaC(-) strain (HG1016) uncovered that it is composed of two different cells: a pigmented type, PS01, ...
متن کاملTdaA regulates Tropodithietic acid synthesis by binding to the tdaC promoter region.
Silicibacter sp. TM1040, a member of the marine Roseobacter clade, produces the antibiotic and quorum signaling molecule tropodithietic acid (TDA), encoded by tdaABCDEF. Here, we showed that an LysR-type transcriptional regulator, TdaA, is a positive regulator of tdaCDE gene expression and binds to the tdaC promoter region.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 70 8 شماره
صفحات -
تاریخ انتشار 2004